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SOME PROBLEMS INVOLVED IN THE NUMERICAL SOLUTIONS OF TIDAL HYDRAULICS 
EQUATIONS 

D. LEE H A R R I S  and CHESTER P. JELESNIANSKI 
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ABSTRACT 

The linearized two-dimensional hydrodynamic equations are presented in a maliller n-hich displays the principal 
assumptions involved. Several approximations are developed for the partial derivatives, and boundary coiiditioiis 
in finite difference form and the associated errors are discussed. The procedure for establishing a finite difference 
analog of the equations of motion and boundary conditions is illustrated, and computational stability for the solution 
of soiiie simple problems is illustrated by means of examples. 

The physical and computational problems associated with the introduction of friction in the coinputational 
model arc discussed. J t  is concluded that  friction should be neglected in many problems but that  it must be con- 
sidered in othcrs. 

1. INTRODUCTION 

Tidal hydraulics is concerned with flow and the effects 
of flow in shallow basins in which the flow is generally 
dominated by long-period gravity waves, such as the 
tides, generated in an adjacent sea or ocean. Tnterest is 
generally centered in the vertical motion of the free 
surface and the horizontal currents. Sometimes i t  is 
necessary to recognize a two-layered structure resulting 
from salt water intrusion or a thermocline. Sometimes 
i t  is sufficient to consider only one space dimension. The 
horizontal boundaries of the basin may be very irregular 
and may vary with time, but their existence is an essential 
part of the problem. Energy may enter the basin through 
the open portion of the boundary in the form of wave 
motion, or through the free surface as wind stress. Energy 
is presumed to be dissipated through bottom friction. 

The equations which govern all tidal hydraulic flows 
are too complex to permit a ready solution in any but the 
most simple problem. Therefore, most investigations are 
conducted with the aid of models in which one attempts 
to include only those phenomena which he believes to be 
most significant to  the investigation. These models may 
be analogous, such as the familiar hydraulic models and 
the mechanical tide-predlcting machine; they may require 
the digital or analytic solution of a set of differential 
equations, or the statistical analysis of observations. For 
maximum effectiveness, all models, physical and statistical 
as well as dynamic, should be based 011 a mathematical 
analysis of the physical problem. However, useful results 
can be obtained from both hydraulic and statistical 
models, even though this process is not fully developed. 

The application of digital calculation on an electronic 
computer to the statistical walysis of storin surge genera- 
tion has been discussed by Harris [7], Harris and Angelo 

[9], and Pore [19]. A similar application of digital cttlcu- 
lations to the analysis and prediction of tides is given by 
Harris, Pore, and Cummings [lo]. 

This paper is concerned primarily with the application 
of digital calculations to the solution of the hydrodynamic 
equations in two horizontal dimensions. The mathema- 
tical background will be discussed from the point of view 
of showing both the weaknesses and strengths of digital 
calculations as compared to other methods of solving 
similar problems. No attempt is made at a rigorous 
development of the ideas presented if these can be found 
in a reasonably available reference. Examples of the 
calculations made by several of the computationttl models 
for very simple basins are presented. 

2. THE HYDRODYNAMIC EQUATIONS 

Since interest is centered in the horizontal flow and 
the motion of the free surface, it is natural that the 
principal simplification should take the form of a vertical 
integration of the primitive equations. This process can 
be carried out with various degrees of rigor. Many 
writers have derived the equations of motion and con- 
tiuuity directly in integrated form, but this procedure 
does not show the approximations involved nearly so 
clearly as the derivation based on the integration of the 
primitive equations. The techniques of this integration 
have been shown by Haurwitz [Ill,  Welander [24], Fortak 
[4], and Platzman [IS]. Nearly all of the other derivations 
can be obtained as special cascs of that  given by Fortak. 

The two-dimensionnl hydrodYynnmic equations may be 
stated in either of two equivalent forms. Until the iri- 
troduction of digititl computations with these equations, 
the form based on the mean currcnt velocities was generally 
preferred. Since then the use of the volume transport 
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vector has gained popularity. The reiison for this will 
be given in a Inter section. A form of the volume trans- 
port equations which conti~ins most o€ the terms used by 
tiny worker in this field and a few error ternis that must 
be discarded to obtain a solution :ire given below. This 
forin would be \ d i d  if (1) the fluid were homogeneous; ( 2 )  
the pressure were given by the hydrosttitic cqu:btioii; and 
( 3 )  there were 110 surface waves. (Surface wives, not 
recognized in this model, will produce significnn t effects 
on sea level in some regions (Harris [SI j .) 

+- b (-)+" uv Jh (u')2dz 
by  D+h b x  -D 

u, v, components of horizontid motion 
u'=u- U/(D+h) 
v'=c-- VI (D + h) 
p= density of water 
pa= atmospheric pressure 
("Th, (')T)&, components of surface stress; ( ' ) T - ~ ,  (U)rpD, coni- 

D= depth of midis turbed fluid 
h.= disturbance in the height of free surface 
g= acceleration of gravity 
f= Coriolis p>iramcter 

poncnts of bottom stress 

Sirice the atmospheric pressure nnd the surface stresses 
are not significt~iit~ly affected by the water motions being 
considered in this paper, it must be assumed that they 
will be supplied from ot!her sources. Consideration of the 
frictionid dissipation terms will be deferred to the end of 
tdie palper, partly from 1:iclc of knowledge of the proper 
friction law, and partly to avoid certain complications 
that may arise in the discussion of computational stability 
if friction is introduced too early. The integrals in 
equations (1) and ( 2 )  are also neglected for lack of infor- 
mation required to compute them. 

The boundary conditioii natural to the problem is no 
flow :icross a closed boundary. 

The principal features of tidal hydraulics computations 
can be better displayed in a linearized version of equations 
(1)-(3) .  We may return to the initial set of equations for 
correction terms tis needed or to determine the nature of 
the errors resulting from neglected terms. The linearized 
equations may be given in the form: 

-+gD bU ---jV+Ku/D= bh --.Dp-l %+(') r h / p  (4) 
bt dx bX 

C + g D  --+fU+KV/D=-Dp-' bh ap.+(u)7h/P (5) 
d t  a?/ b y  

-+-+-=0 bh dU bV 
bt bx ay 

(z) 7-0 (U) 7-0 KU/D=- P ; KV/D=- P 

3. FINITE DIFFERENCE EQUATIONS 

T o  obtain a digital solution of the above equations i t  is 
necessary to approximate the differential quotients by 
finite differences nt discrete points in time and space. 
Suitable approximations can be derived froin Taylor 
Series espniisions of the functions as illustrated below: 

F(x+Az)  may bc written as 

dF(x )  d2F(x)  F ( x  +AX)  =F ( x )  + __ AX+T   AX)^/^! 
d X  

If only the first two terms of this series are considered, one 
obtains 

where the error, e l ,  is given by 

d2F(x) Ax 
el=- - 

2 2  2 (9) 

Equation (S) is called n two-point forward difference. 
A better approximation for many purposes can be obtained 
by  considering a second Taylor cspnnsion, F ( x - A x )  
which niny be written as 

-___ '2:)   AX)^/^!$. . . (10)  

Subtraction of (10) from (7) gives 

d F(x )  - F( x +A X )  - F(x - A X )  + €2 ~- 
d x  ~ A X  
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othcr parameters of the problem. The form of equtition 
(20)  depends on thc pmticular finite difference prediction 
equations employed, and may be altered if any teimi is 
changed, or if any new terms are added. 

It is rarcly possible to establish the requirements for 
coinputatio tin1 stability for geophysical hydrodyiiarnic 
problems in any rigorous inaniier. Theory can be used as 
EL guide in the construction of finite difference systenis 
which may be sufficiently stablc for practical problems 
but the final proof of stability must come from test cal- 
culations. Onc of the principal symptoms of computti- 
tional instability is a growth or decay of energy in the 
system, which does not result from those ternis of the 
equations which should add or subtract energy. Thus 
an effective test for instability can be constructed by 
introducing a disturbance into thc numerical model and 
monitoring the total energy of the solution through several 
oscillations of the primary mode when both forcing terms 
ancl dissipating ternis tire omitted from the equations. 

Since computatioiial instability usually takes the forni 
of an unreasonable growth of energy in the system, it was 
initially thought that the instability foulid in the solution 
of practical problems resulted from using too low a value 
for the frictional dissipation, ancl efforts were macle to  
control this instability by the iiitrocluction of larger fric- 
tion coefficients for the additional dissipation terms. 

One of the first thorough examinations of the computa- 
tional stability of a tidal hyclraulics problem was pub- 
lished by Fischer [3]. He used forward time diffcrcnces 
for the transport terms U and V, and backward time 
differences for thc height. Cciitral differences were used 
for all space derivatii-es. His stabilitj- analysis iiidicated 
that 

( 2  1) 
- 

A t 5  KIDf’, f#O, > L I ~ C ~  AtiAx/\IgD/‘2 

with the notation used in this paper. See Appendix 5. 
Thus very short time intervals ha\-e to be usccl with 

this system if the water is rery deep, and calculations 
ncar the equator would be irnpossiblc. 

The form of equations (9) and (12)  shon-s that the 
truncation error is highest in the higher-order hiirmonics 
of the basin. A little reflection will show that this is also 
true of the round-off error. Thus one may espcct to 
reduce instability by iiitroducing some process ~vhicli will 
remore all traces of the highest harmonic and will clamp 
the other high harmonics. This process is called “filter- 
ing” or “smootIiing.” I t  is especially important and 
especially difficult to treat properly when noli-linear 
terms of the equations are being considered becnuse of 
tlie tendency of non-linear terms to divert energy from 
the principal harmonics to those with both higher and 
lo~ver wave numbers. Unfortunately, most filters which 
remove the unwanted higher Iiarnionics of the system also 
change the energy content of other harmonics tis well, and 
great care must be required in constructing filters which 
r e m o ~ e  the difficult-to-treat high harnionics without, 

I 

seriously affecting the phenomena being studied. Exten- 
sive discussions of the construction of numerical filtering 
functions have been given by Shuman [22] and Holloway 

It can be sho\vii by methods discussed by Sliuman and 
[W. 

Hollomay, that the numerical filter, 

1 p(2) =z [F(x-Ax)  + 2 F ( z )  $F(x+Ax)]  

will eliminate the harnioiiic with a wavelength of 2A2, 
which is found to be the most troublesome, without intro- 
ducing a phase shift or changing the mean value of F(x)  
over any extended range. Extending the above filter 
to two dimensions as in Appendix 4 justifies setting 
a=l,  b=2 in equation (15) and calling the resulting 
central difference form the “filter factor form.” With 
these values of a and b,  the filter factor form eliminates 
wavelengths of 242 in either the x or IJ directions. Several 
other types of smoothing c:m be used to improve the 
computational stability. The selection of the best method 
for a particular problem requires an understanding of the 
physical processes which are important to the problem. 
Some subjective judgment based in part on the solution 
of identical problems with two or more different values of 
Az and At, is nearly always necessary. 

5. FACTORS FAVORING THE TRANSPORT FORM OF 
THE INTEGRATED EQUATIONS 

Continuity considerations require that the total trans- 
port through a channel of variable cross section must be a 
reasonably smooth function of distance. Thus the mean 
speed increases in restricted passages and decreases in 
more open regions. Since the mean speed vmies more 
with position than the total transport, tlie higher har- 
monics in a Fourier expansion of the speed have larger 
amplitudes than the corresponding harmonics in a Fourier 
expansion of the total transport field. The increased 
importance of the higher harmonics causes greater dis- 
tortion of the true solution by smoothing or filtering 
opemtors when meail velocity terms are used instead of 
the transport terms. Neither of these deficiencies in the 
mean velocity equations exists when analytic solutions of 
the equations are obtained. Thus they result only from 
the application of finite difference methods. 

6. FINITE DIFFERENCE REPRESENTATION OF THE 
BOUNDARY CONDITIONS 

Much of the present understanding of tlie computa- 
tionril stability and the use of smoothing functions in tidal 
hydraulics problems stems from the extensive studies of 
numerical weather prediction. The basic equations of 
numerical weather prediction and ticlal hydraulics are 
very similar; the principal cliff erences arc the greater 
importance of the noli-linear terms in the meteorological 
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problem and the greater importance of variable coefficients 
in the tidal hydraulics problem. * 

However, the situation with respect to boundary con- 
ditions is vastly different. There are no natural bound- 
aries in most meteorological problems. Consequently, 
the nieteorologist chooses artificial boundaries in regions 
distant from that of major interest so that the probability 
of boundary error penetration into the region of major 
interest is a t  a minimurn. However, the meteorologist 
has tlie advantage of niany observations at  niany levels 
throughout his region of interest every day. These ob- 
servations provide realistic initial values a t  frequent 
intervals and partially offset the necessity of working with 
rather poorly stated boundary conditions. 

In tidal hydraulics and oceanography, on the other 
hand, the boundaries are ofleii well defined. Most of the 
inforniation which can be used in evaluating models comes 
from tlie boundary, and observations from the interior of 
the fluid which could be used to provide initial conditions 

* Uscful first approximations to tho solution of many meteorological problcms can be 
obtaiiicd with models which eliminntc gravity w'avcs, but retain the effects of the earth's 
rotation. The gravity waves arc esscntial to the tidal hydraulics problem, but a first 
approximation may often be obtained without consideration of the rotation of the earth. 
There are some problems in both fields in which the conditions are the reverse of those 
statcd above, and many problems in both fields in which both gravity and rotation are 
important. Thus this is not considered to be a fundamental diffcrence between the two 
fields. 

Boundar y conditions 
U = O  a t  x .0 ,  a n d  X = L  
V = O  a t  y - 0 ,  and y = W  

are very rare. Consequently the need for accurate state- 
ments of the boundary conditions is much greater than in 
meteorology. The simplest statement of the boundary 
conditions is obtained for a closed rectangular region of 
dimensions L W ,  in this case the boundary conditions 
become 

u(O)=u(L)=O 

A solution which is consistent with the true boundary 
conditions and the centrd diff erence formulation of the 
problem can be obtained from the calculation illustrtLted 
in figure 1 : ~  Values supplied or computed for odd time 
interrals are shown abore the computation point; values 
computed for even time in terv:ils are shown below the 
line. If tlie Coriolis term niust be included, a somewhnt 
less satisfactory procedure results, illustrated in the same 
nianner in figure Ib. Here the boundary must be thought 
of as moving a distance of As between time steps and tlie 
entire procedure must be considered as a gross approxiinn- 
tion. Real basins rarely have straight line bound:iries, 
but if As is small relative to the basin, the true bound:u-y 
can be approximated by a short section of a zigzag 
boundary constructed on the above principle. Calculn- 

v = o  v=o v=o 
0 - 0 

u=o u U u.0 

h h h 

\I V V 

u=o U U u=o 
h h h 

0 0 

V V V 
0 0 

u=o U U u=o 
0 

h h h 

v=o v=o v=o 
0 - 0 

v.0 V I 0  v=o . - 0 

u =o U U .  u =o  
h v=O h v=o h 

0 

V h V h V 
0 0 

u.0 U u= 0 

u=o u U u.0 

h V h V h 
0 0 

V h V h V 

u.0 U u=o 
0 0 

u=o U U u-0 

v=o I/= 0 
0 0 

v=o v=o v=o  
0 0 

a V e r t i c a l  letters ( u )  are  odd t imes b 
S l a n t  letters ( u )  are  even t imes 

FIGURE 1.-Schematic illustration of a simple representation of the computation scheme and boundary condition in the digital solution of 
the hydrodynamic equations for a rectangular basin: (a) without rotation, (b) with rotation. 
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tions macle with this type of boundary show that the main 
fetituues of the flow can be reproduced with reasonable1 
:muracy (Hanscn [5] , [6] ; Welrtnder [24]). Nevertheless, 
tlie 1iliiyiy fictitious coriier points introduced by  this zigzag, 
bounclary are source points for small-scale disturbances 
not germane to the problem, and the details of the solu- 
tion obtained with this system are of questionable value. 
The system does not provide values of h t i t  the coast where 
they are most needed iind where niost of the rerificatioii 
cliitn are to be found. 

An alternate system of approximating the true boundary 
without the use of false corner points hiis been developed 
by  Pltitznian [ I S ] .  He requires that the flow be parallel! 
t o  the generalized coast t i t  the coastline, and applies the 
continuity equation for a calculation of the nienn height 
in each coniputation square of length As which is crossed 
by the coastline. 

A form of the boundary conditions which gives h a t  the 
cowt m d  which we believe to be new is given below. This 
forin presupposes tliiLt trimsport and height terms are 
c:ilculated a t  each point of the grid system. If there is 
no transport across the line z=o, equation (4) reduces to 
the form 

If D is constant, combining equatioiis (24) nncl (13) gives 

If  D vanishes a t  the coast, equation (24) for bh/bx is in- 
determinate. This possibility can be avoided by intro- 
ducing the identity 

Dbh/bx= b(Dh)/bx-hbD/bx (26)  

When this expression is combined with (24) tmd (13)  one 
obtains 

The term, Do,, does not appear in this expression, so tlie 
solution does not become indeterminate when Do,? van- 
ishes nt tlie shore. However, it reduces to (25) when D 
is constant. The acceptability of this espression when 
Do,?=0 a t  the coast has not been tested but it  ill be 
sliomn bel0117 that this form does lead to an improvement 
in the calculations for some cases of variable but non- 
viinishing depths at the shore. Expressions for the 
boundary conditions on the other boundaries can be 
developed in a similar mnnner. 

It is very convenient when obtaining quantitative 
nndytic solutions and when discussing most of the prob- 
lems associated mitli numerical solutions to consider only 
rectangular regions. However, this also presents problems 

concerning the proper expressions for the variables a t  the 
corncr points which are comnion to both bounclaries. 
The ideal solution shoulcl de:d with actual, e.g., curvilinenr 
bounclnr~ies, and the problem of corner points sliould 
u1tim:itely vanish. Hence tliis is not considered :L fuuda- 
nientnl problem; however nt the present stage of clevelop- 
nient it is essentiiil that  corner points be considered in a 
innniier which will minimize errors. Methods for doing 
this are presented in Appendix 3. 

7. POTENTIAL ADVANTAGES OF DIGITAL 
SOLUTIONS 

In spite of the difficulties cited nbove, the cligi tal method 
of solving the ticld Iiyd raulics problem offers certain 
aclvuntages that cannot be obtained by otlier means. 
The most obvious ad\-nnt;ige is t h a t  the finite difference 
formulation of tlie problem permits a much better approsi- 
nintion to the actual wind stress and atniospliei*ic pressure 
fields t h a n  can be obtainccl i n  any fluid model. 

A second potentid :dvnnt;ige of digital solutions in 
this field is that  once satisfnctory numerical represcnta- 
tioris JitLve been developed for ti given class of phenomena 
new biisins cii11 be constructed or old ones altei.ccl by the 
preparation of a few punch cards. The effects of hori- 
zont:il and vertical gr;idien t s  of densitj- and of the rottition 
of tlie earth can be aclclecl with much greater accuracy 
nnd less cost than in hydraulic models. 

8. TESTS OF SOME DIGITAL COMPUTATIONS 
SCHEMES 

Because digital solutions to the hydrodynnmic equa- 
tions bave the potential ability of permitting the calculn- 
tion of the effects of wind stresses and pressure gradients 
on tlie wtiter level at the coast of an ocean or a large lake, 
we believe that it is necessiiry to exploit this technique 
in the study of storm surges. We also believe that the 
technique, when fully developed, should be very useful 
in engineering design studies. The development and 
testing of such computational niodels suffer from severaI 
difficulties not mentioned above. Chief among these is 
that surge observations obtained a t  the shore during 
storms contain an unknown increment due to the effects 
of surfiice waves. This contribution is developed in a 
strip less than one mile wide paralleling the coast (Dorre- 
stein [ l ] ;  Fairchild [ 2 ] ;  Longuet-Higgins and Stewart 
[14], [15]; Saville [ 2 1 ] ) .  It is not governed by equations 
(4)-(6) but it does appear in all of the water level obser- 
vations. Nest in importance are the uncertainties con- 
ceriiirig the wind stress field. Although a solution of the 
equations for the ~viiicl-driven currents can provide much 
useful information, the computational model cannot be 
adequntely evaluated by ti direct comparison of observed 
and computed water levels. 

A series of coniputlttional models has been developed 
to test the acceptability of the various finite difference 
expressions discussed above. The stability of each iilodel 
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2 I60 - 
m 

5 160 

0 " - 

has been tested by introducing an applied force of the 
type 

( V ) T h = O  for a11 t 
( 2 )  T h  : 0 t I 0  
(')rI,=A [I -cos w t] 0 I t I 2T/W 
(0 T,, = 0 27rlw I t 

Equilibrium conclilions are assumed to prerail :it t = O .  
The totid energy (kinetic+potentid) of tlie basin is 

coniputed for e:di time interval. The details of this 
calculation are given in Appendix 1 .  All busins are 
closed with no transport across the boundaries. Each 
basin is rectmgular in s h p e  and is 1SXlS grid steps in 
dimensions escept where otherwise noted; since the 
equations are linear the absolute d u e  of the dimensions 
litis no bearing on the study. Tlie pertinent fact3 for 
each model tire given in tlie figures. As explained above, 
the friction term litis been omitted to avoid any possible 
concednient of computational instability through fric- 
tional dissip a t' ion. 

Tlie first model tested was t h t  of Fisclier [3] described 
in Appendis 5. The energy c:tlculations are sliown in 
figure 2. The oscillations :we due ni:tinly to IL phase 
difference of (At ) /2  between the trmsport and height 
fields. The stability criterion without rotation was 
found to be At<As /&m.  The free period was approxi- 
mately 26At units. The general features of the height 
and flow patterns were adequately reproduced in the model 
without rotation. This could be determined by com- 
pariwn with an analytic solution. In  the model in- 
volving rotation the inertial period from tlie numerical 
calculation3 was Iipproximttely 52At units or double 
the free period without rotation. The niodel with 
rotation \vas unstable as predicted in Fischer's theory. 

The second model tested was identical to the fkst except 
that  central time differences were used after tlie initial 
time step. Several methods of starting the solution 
were tested. The solution was not very sensitive to 
the stnrting method. The starting niethod adopted 
is described in Appendix 2. The stability criterion for 
the central difference form is given as At<As/,/2 gD, 
half of the value found in the previous case. The energy 
curves are shown in figure 3. The improvement in 
stability over Fischer's model is clearly evident. It 
was necessary to enlarge the scale in order to show 
evidence of variation of energy with time. 

The non-rotating model reproduced the analytic solu- 
tion to a high order of accuracy. No analytic solution 
in convenient form is known for the rotating model con- 
sidered here. It was suspected that a resonance coupling 
between the inertial frequency and the natural frequency 
of the basin might be developed if the natural period 
were near the inertid period. Tn order to test this hypoth- 
esis the previous bitsin was adjusted to provide a natural 
period n little greater than 45At units. The resulting 
energy curves are shown in figure 4. The first results 
showed computational instability. The calculations were 
repeated with two smaller values of At without obtaining 
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FIGURE 2.--Eircrgy computation for Fischcr's computational 
model, cctitral spacc tliffcrenccs, forward or  tiackwarcl time dif- 
fcrences, constant clcpth 
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FIGURE 3.--Encrgy coinputation for model using central differences 
in tirnc and space, coilstant tlcpth; iiatural period cclutlls otic-half 
the incrtial period for rotating tlioclcl. 
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any substantial improvement. It appears from these tests 
that the central difference formulation of the problem is 
nearly stable if the frequency of the motion is very differ- 
ent from tlie inertial period, but  quickly becomes unstable 
if the natural and inertial periods are similar. I n  the 
general storm surge problem, however, one cannot be 
sure that the natural period or the forcing period will not 



41 6 MONTHLY WEATHER REVIEW Vol.  92, No. 9 

, 
Cenlral lime dl f ferences.  F l l i e r  foclor  v o c e  d l f f e r e n c e s  

W =  1.155 f = Nolural  frequency 

I42 - - 
t- 140- - c 
c) 

138- 

2 w 136- - 
I34 - - 

I I I I I I I I I I I 
60 80 100 120 140 160 180 200 220 240 260 280 300 

TIME [ A t  = 2/3 A S / m  I 

F I G U ~ E  5.--6amcTas figure 4, cscept that  the filter factor form is 
used for space differences. ~~~~~~~~ 

Voi iob le  depth C O I ~  

Central l ime d i f ferences 
F i l lered s p m e  differences 
No r o t a l i o n  

8 0  
I 
I 
I 
I 

4 0  - - 

I l l  I l l  I I  I I I 1  

0 20 4 0  60 80 100 120 140 160 180 200 220 240 
T I M E ( A ~ = A S / = )  

FIGURE 'i.--Encrgy calculation for variable clcpth iiiodcl with stress 
parallel t o  the clcpth contours, central time differences, filtered 
factor space diffcrciiccs, no rotation. 

Varioble depth case 
Centrol l ime di f ferences 
F i l tered I P O C ~  differences 
W =  1.155 f = N o l U r a l  per iod 

FIGURE 6.-Schematic illustratioii of the variable clcptli basin use9 
in testing coinputational stability. 

I 
I 20 

I I I 1  I 1  I I I I l l  
0 20 40 60 80 100 120 140 160 180 200 220 2 4 0  

TIME ( A t = A S / Z x ' )  

approach the inertial period, therefore the search for & 

more stable computatioiial system was continued. 
The third model tested was identical to the last in its 

physical characteristics. However, the filter factor form 
was used. Several subtle changes in the numerical anal- 
ysis are required to obtain a consistent set of prediction 
equations. In  order not to  interrupt the present flow of 
thought on the computational stability problem, a de- 
tailed discussion of these changes is deferred to  Appendix 
4. The important consideration here is the improvement 
in computational instability obtained with the filter factor 
form, as shown by the energy curve in figure 5 .  Again it 
became necessary to  expand the scale to show any varia- 
tion of energy. This form appears to  be sufficiently 
stable, even when Coriolis terms are included. 

I n  the fourth test, the constant depth was replaced by 
the deDth law 

(28)  
D(s, y)=-gs2+- 4c x f b  

L2 L 

FIGURE 8.-Same as figure 7, but with rotation. 

depicted in figure 6. No instabilities were observed with 
or  without rotation of the basin on a 36X36As grid. 
The results are not shown. 

The fifth test was identical with the preceding one, 
except that  the depth law was changed to 

This is equivalent to  rotating the basin shown in figure 6 
by 90' so that the stress is parallel to the bottom contours. 

The energy curves obtained from an 18X18As grid 
without rotation are shown in figure 7. The solid curve 
was obtained with boundary conditions of the form of 
equation (25 ) .  The dashed line was obtained with bound- 
ary conditions of the form of equation (27). Here it is 
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seen that the form of the boundary conditions can aflect 
the computational stability iind that instability niay take 
the form of R gradual loss as well as a growth of energy. 

The energy curves obtnined with rotation :we shown in 
figure 8. The solid line was obtained with equation ( 2 5 )  
and the dashed line with (27). The flow patterns of the 
variable depth models are more complex than those of 
the constant depth models. Thus a better description of 
tlie flow and an improvement in the computational sta- 
bility can be obtained by using smaller values of Ax. 
This is particularly true when the rotation of the etirth is 
considered. 

9. THE PHYSICS OF THE DISSIPATION PROCESS 

The least understood of the problems involved in the 
construction of hydraulic models is the proper method of 
dissipating energy. A physical analysis of the problem 
indicates that  the principal cause of dissipation over a 
rigid bottom in shallow water is skin friction and that 
this should depend on the bottom roughness and the 
velocity vector near the bottom. The resulting stress is 
proportional to the velocity gradient a t  the bottom and 
is believed to be proportional to the square of the speed 
at the upper limit of the boundary layer, and directed 
oppositely to the bottom current vector. However, the 
calculations discussed above provide values only for the 
mean current averaged tliroughout the depth of tlie fluid. 
I n  severe storms, the instantaneous motion a t  the bottom 
niay be dominated by wind waves and swell to a depth 
of a hundred feet, and even the resultant motion,, averaged 
over iiiaiiy wave pcriods, may have any orieiitation 
relative to the mean current motion. The direction, as 
well as the magnitude, of the bottom stress vector is 
frequently indeterminable from the other information 
provided by the calculation. 

The above considerations apply to both physical and 
mathematical models. When only the transient periods 
involving the build-up of t~ disturbance :ire considered, 
the quantitative accuracy of published computations 
appears to be indcpendent of the assuniptious made about 
the bottom stress, and a wide range of assumptions has 
been uscd. This suggests tlint equally good results might 
be obtained for the trnnsient case by neglecting the 
dissipation term altogether. This procedure cnnnot be 
used in studying the decay of m i  unusual disturbrmce or 
in studying quasi-steady stiitc solutions which require the 
operation of the niodel for several prototype days or 
weeks. In these cases some clissipatii-e mechanism must 
be incluclcd to obtain n rcnsonable balance of energy. 
Any scheine which ncllie\-es a reasonable biiliince of 
energy ctin be expected to provide a reasonable picture of 
tlie tiinin fetbtures of the fiow, but only the scheine whichis 
locdly correct will give :L good reproduction of stidl-scale 
features. 

Tlie use of hydraulic nioclels ;Lvoids the necessity of a 
clear statement of the law governing the dissipntion of 
energy. This does not iiietm tlint it a\.oids the errors 

resulting from using an unsatisfactory law. If the model 
is calibrated for calm weather conditions i t  can be expected 
to underestimate the friction effects during storms. If 
calibrnted for storm conditions it can be expected to  
overestimate friction during calm weather conditions. 

10. THE COMPUTATION OF DISSIPATION TERMS 

Although the proper expression for the physical dis- 
sipation term has not been uniquely determined, i t  is safe 
to say that its effect should be to decrease the total energy 
of the flow. However, the straightforward introduction 
of the dissipation term into cen t rd  difference formulas 
usually lends to computational instability, that  is, to an 
increase in the energy of tlie computed flow. This niay 
be avoided by evaluating the velocity a t  time t - A t  when 
computing tlie dissipation term in a model in which central 
differences tire used for all other terms, or an implicit 
method niay be used. A more detailed discussion of this 
cornputntional problem litis been given by Miytikodn [16] 
and Y1tLtzm:Ln [IS]. 

11. SUMMARY AND FUTURE OUTLOOK 

It 11:~s been shown that tlie computational stiibility 
and hence the reliability of numerical solutions of tlie 
hydrodynamic equations m:iy depend on the ptwticular 
manner in which the terms and differential quotients of 
the differen tin1 equations and the boundary conditions 
are approximated by finite difference expressions. It hiis 
been pointed out, but  not explicitly demonstmted, tlint 
tlie crrors resulting from i ~ i i  uiIsLtisfactoiy mcthod of 
approximt~tions to the terms iind diff erential quotients 
generally take tlie form of false disturbances with hori- 
zontal scales of only EL few mesh. lengtlis in both the velocity 
and height fields. Small-scde disturbances in the grid 
system can be eliminated or tit least suppressed by the use 
of appropriate filter functions. However, tlie filtering 
operators will aff ect both the true small-scale disturbance 
which is a part of the physical problem and tlie false small- 
scale disturbance which results from tlie numerical process 
in the same manner. Thus i t  is not possible to obtain a 
true solution when the numerical process applied generntes 
disturbnnces of the same scale ILS tlie real disturb:mccs. 

This difficulty, which is of :L matliematical nature, can 
be avoided by using mesh lengths much smaller tlim the 
scale of any important phetiomenon to be invcstigatcd. 
This result could be obtained in a straig1itforw:Lrd mnnncr 
by using uniformly spaced computation points over tlie 
entire basin, and magnetic tapes or other devices for 
increasing the storage capacity of a computer. This is 
rittller expcnsire because tlie permissible d u e  of At is 
limited proportionally to ~ z / d 2 .  Space detail is 
generally needed only in sh:~lIow water, but the existence 
of deep water constrains one to compute excessive time 
detail as well. Tlie same result ciin be obtained by using 
a smdler meshlengtlr in regioiis where small-scale plicnoin- 
ena are important, mid n greater mesh length in other 
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regions. Experiments now being conducted by the '  
authors and their associates indicate that this process will, 
produce satisfactory results but  that this problem is no I 
more simple than the construction of an optimum finite ' 
difference form. 

Although no data on the solution of practicd problems 
are contained in this paper, references have been made to 
several studies by Hansen, Platzman, Welander, and 
others in which excellent agreement was obtained between 
numerical solutions of the equations and the large-scale 
features of geophysical phenomena. In  most cases the 
computations also show small-scale phenomena of greater 
intensity than that observed in nature, and not  very well 
correlated with the observed small-scale phenomena. 

The problem of energy dissipation is of a more funda- 
mental nature. One other problem of a similar nature is 
also important. This is the specification of the wind stress 
field. In  both of these cases the difficulty is due to the 
lack of a satisfactory physical model relating the transfer 
of momentum by turbulence to the time-averaged flow of 
a fluid. In  the first approximation the difficulty amounts 
to an imprecise knowledge of a momentum transfer coeffi- 
cient such as the drag coefficient for wind over water, or 
water over the bottom of the basin. In  both cases some 
improvement in the numerical solution can be obtained 
by calibrating it to past observations by experimenting 
with the transfer coefficients, in much the same way as 
one calibrates a hydraulic model by varying the roughness 
parameter. The process is not very satisfying from a 
scientific point of view, but it can be used to obtain useful 
results. 

The authors must decry a prevailing tendency in this 
field to try to match a poorly understood dissipation 
mechanism to a poorly understood computational insta- 
bility problem in tlie hope that tlie two errors will cancel 
each other. 

The nature of the computational difficulties is well 
enough understood to enable one to obtain considerable 
insight into the nature of many problems even though 
quantitatively exact answers may not be a\7ailable. For 
example, numerical computations may be used to deter- 
mine the relative severity of the surge expected to accom- 
pany an arbitrary storm approaching tlie coast from 
several directions. This concept has been used as the 
basis of a successful system for predicting the seiches occa- 
sionally produced in Cliicngo by squall lines. Numerical 
calculations by present methods can be expected to reveal 
the response of a harbor as a whole to any large-scale dis- 
turbance outside the harbor, but the hydrodynamic cal- 
culations discussed here cannot yet be depended on to 
reveal information 011 the effects of breakw' 'L t ers or wave 
run-up, or intersecting wave trains. Other types of eal- 
culations, such as wave refraction diagrams based on 
geometrical opt.ics, may be useful in solving such problems. 

APPENDIX 1 .-ENERGY CALCULATIONS 

The energy invariant for equations (4), ( 5 ) ,  (6) without 
the friction and forcing terms is 

where A is the surface area of the basin. Since the trans- 
ports and height values are known only a t  discrete points 
of a grid system, the energy equation can be solved only 
by recourse to a numerical quadrature. Throughout this 
paper, the three fields are calculated a t  each and every 
grid point, including the boundaries, for each time interval. 

Consider a rectangular (LW) grid whose points on L 
run from 0 to L, and on W r u n  from 0 to W. By noting 
that the boundary conditions oblige the transports normal 
to  the boundaries and a t  the corners to be zero, energy for 
the rectangular basin a t  a given time can be approximated 
by the trapezoidal rule to 

where h,, ,=h(iAs,jAs,  t ) ,  '~c~,~=u(iAs,jAs, t ) ,  vi,,= 
v(iAs, jAs,  t ) .  The quantity E* is the energy term calcu- 
lated here in machine coniputations for convenience. 

APPENDIX 2.-STARTING PROCEDURE 

If central differences are used and calculations arc for 
each grid point at  each time period, it is necessary to 
know the field values of U, V,  and h a t  time t and t-1 
in order to calculate the values a t  time t+ 1. Thus some 
alternative procedure must be used for culcultitions at 
time t= l .  This requirement is avoided when only 
forward differences are used in time, or when the stag- 
gered grid system is employed; however, there are other 
disadvantages to these systems. Since d l  grid points 
are used at  each time step in this study, special starting 
procedures are required utilizing a forward difference 
scheme for the first time interval. 

Since the field values are zero initially and tlie forcing 
function is small at the first time interval, the momentum 
equations of motion are approximated a t  interior points to, 
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Applying a forward difference to tlie time derivatives 
above and taking the arithmetic iiieliii in time for the 
right-hand side of the equ2itions give, 

WIicn the principal part of each transport term is chosen 
for the Coriolis cross term, the above is further approsi- 
111 il. t ed to 

The starting values for the transport ternis are now 
substituted in tlie equation of continuity, with similar 
rcnsoiiing as above, to give height values a t  the interior 
points as 

At 
4As hi, j = - [u:,,, j-u: - 1 .3  +vi, 3 + 1-v:, 3 - 11 

Note that hi,, is zero everywhere in tlie interior for the 
type force used in this study except for points on the 
first mesh lines bordering the boundaries. 

A starting procedure tor the boundaries can now be 
foi*rnul:rted. Consider the west wall where the U trims- 
port is zero for all time. In this case the V transport is, 

For the force considered in this paper, Vi,? is zero. 
Similar considerations hold for the other boundaries. The 
boundary conditions of equation ( 2 5 )  utilizing a forward 
differencing in space give 

Similar forms %re developed for the other boundaries. 
For the corner points, a niethod is given in Appendix 3. 
Tests made with several different types of starting 

procedures gave results which appear to show that the 
numericnl solution for a rectangular basin, initially 
quiescent, is not sensitive to tlie starting procedure used 
for the type force considered in this study. 

For some nuniericiil runs with different starting pro- 
cedures, the height values of the boundtiry points after 
each interval of iiincliine calculations were stored on 
mngnetic tape for future use. The same probleni was 
then rerun with the stored height ralues as boundary 
conditions to see if zero noriiial transport could be recnp- 
turecl on the boundaries. For these tests, the starting 
procedure was superior to others tried and did recapture 
zero normal transports a t  the boundaries except for 

APPENDIX 3.-CORNER POINTS 

The corner points of a rectmgular grid hn\-e zero 
transports; therefore b Ujbt, bV/bt are also zero. This 
suggests using both iiioiiieii tun1 equations weighted 
equally to determine height \-dues :it the comers. Con- 
sider the STV coi'ner a t  point (0, 0) .  The two momentum 
equations give 

bh- (2) 7. dh- (') T 

ax gn' b y  gn -_- --- 

Expanding tlie above derivntives ILS in (13), adding and 
arranging gives, 

For starting \dues ,  a simple forward difference of' tlie 
two nioiiien turn equations gives 

The momentum equations can also be combined to give 
a slightly diflerent coinpact form. * 

(1-1 0 -11 I 

Application of (27) to the two inoinentuni equations 
gives, for vnriable depths, 

-1 0 

4 4  

0 4  
h? o= 

-11 

-11 

-I1 
-1 0 

Similar results liolcl for tlie other three corner points. 
Notice that tlie lieiglit values i L t  tlie corner points :ire 
determinecl lwt, after field vdues :ire determined a t  tlie 
interior and boundnry points. 

APPENDIX 4.-SMOOTHING THE CENTRAL 
DIFFERENCE FORM 

The growth of energy in the runs of the central difference 
form may be attributed to tlie interaction of liigli fre- 
quency components for which the grid system is incop;Lble 
of discriminating correctly. l'lie smnllest warelength for 
which the grid system is capable of cliscriminating is 
2As; this mnvelength is the one most likelj- to arise from 
truncation error i m c l  thercforc tlic one most likely to  

*The form can be dcrived from a Taylor exiiansion in two dimensions or applications 
minor errors on tlie corner points. of (13) 
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1 

0 

-1 

degrucle the solution with time. By use of a smoothing 
routine, wavelength components of 2As may be suppressed 
from the field a t  given times (Shuman [22]). An elemen- 
tary smooLliing function in one-dimension acting on i~ 
field F a t  discrete interior points (i, j )  of a grid system can 
be, 

1 1 
2i,j=z [Fi-l,,+2F~,,+F2+1,,1=;? I1 2 1 I F2,i 

hyj 

I n  two dimensions, one could smooth first in one 
direction and then smooth the smoothed value in the other 
to obtain, 

-1 0 1 

-2 0 

-1 0 1 

This derivation also shows that all finite difference 
operators 'have some characteristics of smoothing opera- 
tors. I t  appears that  terms which are not differenced 
should be smoothed by R similar smoothing function. 
Experimen ts not discussed in this report indicate that 
this procedure improves the s tability of the calculations. 
The filter factor forms of the equations of motion, as 
used in this study, are given below. Note that the 
Coriolis terms are smoothed. 

If the area 9-point smoothing form and the above 
altered derivative forms are applied to the field values a t  
time m in the equations of motion for the centrtil difference 
form, tile following results: 

2 U % ,  

It is irrelevant in which direction smoothing is first np- 
plied. The 9-point form can be applied to the field values 
of interior points while the 3-point form can be applied to 
the boundaries. No known symmetric smoothing form 
can be applied to the corner points. 

It is possible to keep the program loops which compute 
the field quantities for time t+1 distinct from the smooth- 
ing loops, and in fact this procedure is frequently followed. 
Some advantages can be gained by combining the two 
processes. If the %point smoothing form is applied to tho 
derivatives of the central difference form, say, in the x- 
direction, there follows, 

Vm+l,Vm-l- At 
a .  3 ~iDi,i 

1 2 1 

+ o  0 0 

-1 -2 -1 

-1 -2 0 2 
-2 -4 0 4 
-1 -2 0 2 

=-I 1 
32As 

If the following approximation is considered, } VTr 

- 1 0 0 0  -1 0 
-2 0 0 0 

-1 0 32As 

then the derivative can be rewritten as, * 

and 

I1 2 
fat 1 +-2 4 S 

1 2 

0 0 

-1 -2 

I1 2 

Note that in boundaiy- computations using the one- 
dimensional smoothing operator, the Coriolis cross term 
is libsent and the deiivtitive remains unchcinged from 
a similar approximation as in the two-dimensional form. 
The central difference form thus can be applied directly 
to the boundtiries without any alterations. 

Some further characteristics of the filter factor form of 
the equations can be illustrnted by considering the free 

*If F(z ,  y) is cxpanded in a Taylor scrics up to and including the 2d derivatives about 
eight neighboring points, one can form, 

-a 0 a 
E F = L  
az ~(b+2a)As  -' O * Fl,i  These expressions are of the same form as equation (15). IL 0 

This derivation +the name factor form'' 
where u and 6 arc parameters at disposal. In  the central difference form a is taken as 

(Shuman [23]) and the choice of the conshants a and b. zero. 1 ~ 1  this study, a is 1 and 6 is 2. 
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oscilliitions of a constant depth basin in the absence of 
the Coriolis and force terms. Lct the solution for the 
transport and height fields hare  formal solutions of 
individual terms, 

(U,V,h)mAt= (U,  V,h)OP 

where (U,V,h)OcceGAS(aifb~) arid a=2.rrlL, b=2a/Ware spa- 
tial wave numbers. The formitl solution permits, 

(cj, V ,  h) ( m + l ) A f = x 2  (U, v,h)(-At 
(U, V ,  h) ””‘ = A ( U ,  V ,  h) ( m - l ) A  

The filter fitctor form may now be written as, 

qDAt At 
4As 4As where, a=--, p=-, v’=4 sin aAs(l+cos bas), and 

v “ = 4  sin bAs(1Scos aAs) 

Suppose now that L or W has wavelength 2As. The 
terms v‘, and v” in the nintrix disappear so that wave- 
lengths of 2As are deleted from the computations. * 

In order for the matrix form to hold, 

(I2- 1 ) [  (A2- l)z“”’z+v’’2)xz]=o 
or 

For stability, it is required (Riclitmyer [20]) that  Ix21 51. 
For this to hold, the abovc equation gives, 

<1 
ap (v’ 2+ v ’ ’ 2) 

4 

Noting that the m a s  of V’ and V” is 8,  then substitution 
in the above equation gives a stability criterion of, 

As  At<- &D 

This criterion is identical to that of the ccntral diffcrence 
form. 

APPENDIX 5.-FISCHER’S FORM 

The finitc difference form given by Fischcr [3]  uses 
forward differences in time and central differenccs in 
spacc. It is a combination of explicit and implicit 
methods. For interior points, neglecting bottom strcss 
arid incorporating the pressure force term with 7 the 
surface stress term, the form is, 

*In the central difference form, wavelciigtlis of 24s do not conveniently drop out since 
d and y’’ do not have the multiplication tcrm, (l+cosi 4s). 

where the notation follows thitt of equations (1)-(3). 
It can be shown that for constant depth, no Coriolis, mid 
free oscillntions, a stability criterion for the simplc wnve 
equation is, 

Fisclier’s foriii is appealing since field d u e s  for time 
(m- 1)At are not required in the calculations, the sttLbility 
criterion is twice that of the central difference form, and 
starting values are not needed. For the case of rotrLtion 
with constmt depths and a periodic boundary condition 
that permits II solution in a Fourier expansion, the form is 
unstable unless the bottom stress term in the difference 
form is retained as a frictionnl dissipation term. The 
friction term as given by Fisclier is, (z)7-,=rU; (Y)T-,=TV, 
where T is IL coefficient generitlly given as a function 
that varies inversely as some power of the depth. For 
this case, Fischer shows that the difference form is stnble 
provided th a t 
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